Resonant flow instability of MHD surface waves

نویسندگان

  • W. J. Tirry
  • M. Goossens
چکیده

We study the effect of velocity shear on the spectrum of MHD surface waves. A nonuniform intermediate region is taken into account, so that the surface wave can be subject to resonant absorption. In order to deal in a mathematically and also physically consistent manner with the resonant wave excitation, we analytically derive the dissipative solution around the resonant surface in resistive MHD. Using these analytical solutions in our eigenvalue code, the effect of the velocity shear on the damping rate of the surface wave can easily be investigated with limited numerical effort. The presence of the flow can both increase and decrease the efficiency of resonant absorption. We also show how the resonance can lead to instability of the global surface mode for a certain range of values for the velocity shear. The resonant flow instabilities, which are physically distinct from the nonresonant Kelvin-Helmholz instabilities can occur for velocity shears significantly below the Kelvin-Helmholz threshold. Although resonant absorption as dissipation mechanism is present, the amplitude of the surface mode grows in time. The resonant flow instability can be explained in terms of negative energy waves : to get an unstable negative energy wave, some dissipative process is required to ensure energy dissipation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of mass flow on resonant absorption and on over-reflection of magnetosonic waves in low β solar plasmas

The influence of a stationary mass flow on driven resonant MHD waves is studied for incoming slow and fast magnetosonic waves with frequencies in the slow and the Alfvén continua. In addition to the classic resonant absorption already present in a static plasma, driven resonant waves can also undergo overreflection. Depending on the strength of the equilibrium flow a variety of resonant MHD wav...

متن کامل

MHD waves and instabilities in flowing solar flux-tube plasmas in the framework of Hall magnetohydrodynamics

It is well established now that the solar atmosphere, from photosphere to the corona and the solar wind is a highly structured medium. Satellite observations have confirmed the presence of steady flows. Here, we investigate the parallel propagation of magnetohydrodynamic (MHD) surface waves travelling along an ideal incompressible flowing plasma slab surrounded by flowing plasma environment in ...

متن کامل

On the validity of nonlinear Alfvén resonance in space plasmas

Aims. In the approximation of linear dissipative magnetohydrodynamics (MHD) it can be shown that driven MHD waves in magnetic plasmas with high Reynolds number exhibit a near resonant behaviour if the frequency of the wave becomes equal to the local Alfvén (or slow) frequency of a magnetic surface. This near resonant behaviour is confined to a thin region, known as the dissipative layer, which ...

متن کامل

Slow surface wave damping in plasmas with anisotropic viscosity and thermal conductivity

This paper studies the damping of slow surface MHD waves propagating along the equilibrium magnetic field on a finite-thickness magnetic interface. The plasma is assumed to be strongly magnetised, and the full Braginskii’s expressions for viscosity and the heat flux are used. The primary focus of the paper is on the competition between resonant absorption in the thin dissipative layer embracing...

متن کامل

Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

Nonlinear resonant magnetohydrodynamic (MHD) waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc.) The resonant behaviour of slow MHD waves is confined in a narrow dissipativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998